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ABSTRACT

-4W study the convergence of a finite difference scheme for the Cauchy

problem for t5 porous medium equation, ut = (u) , m > 1

The scheme exhibits the following two features. The first is that it

employs a discretization of the known interface condition for the propagation

of the support of the solution. -e-ihus generate approximate interfaces as

well as an approximate solution.

The second feature is that it contains a vanishing viscosity term. This

term permits an estimate of the form INu ) 1 4 c/t • --

xx 1, R
- <,We prove that both the approximate solution and the approximate

interfaces converge to the correct ones.

Finally error bounds for both solution and free boundaries are proved in

terms of the mesh parameters. -
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SIGNIFICANCE AND EXPLANATION

The porous medium equation represents a model for the flow of a gas in a

medium with constant porosity. The most interesting feature of such a

physical phenomenon is that if initially the gas is concentrated in a compact

set, then for later times even though the support expands, it remains

compact. The boundary of the region where the gas is concentrated is the free

boundary of the problem.

In this paper we construct numerically the solution of such a problem and

also the free boundary.

We also supply error bounds in terms of the mesh parameters, both for the

solution and the interfaces in the sup norm.
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AN ILN~ERFACE TRACKING ALG)RI~TH
'4 FOR THE POROUS MEDIUM EW-ION

E. DiBenedetto* and D. C. Hoff*

1. Introduction

* in this paper we derive and analyze a finite difference

scheme for computing both the solution and the interfaces

for the porous medium equation in one space dimension. We

demonstrate that the approximate solutions and the approxi-

mate interface curves converge to the correct ones, and

obtain Lo bounds for the error in terms of the mesh

parameter.

Consider the laminar flow of a polytropic fluid of

density (x,t) - u(x,t) , in a porous medium which is

assumed to occupy the whole space, and suppose that at time

t = 0 the fluid is contained in the slab C(O) < x < YO)

The phenomenon can be modeled by

(1.1) ut = (u , (x,t) F ST R x (0,T]

0 < T <

(1.2) u(-,0) = uo(.) in R

where m > 1 is a given constant, and u0  is a given non-

negative function such that u0 (x) > 0 if x E ( t( 0),'r(0))

and u0 (x) = 0 elsewhere. We assume u0  is continuous in IR

* Indiana Ukiversity Bloomington, Department of Mathematics, Swain Hall East,
Blocmingtcn, Indiana 47405.

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.
Partially supported by the National Science Foundation Grant No. 48-296-80 and
M;S-8300293.
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Since the problem is degenerate, (1.1)-(1.2) is inter-

preted in a weak sense and the solution possesses a modest

degree of regularity. Precisely (x,t) -, u(x,t) is said

to be a weak solution of (1.1)-(1.2) if

u C C(ST) (um) x L T

and

(1.3) f u(x,.)4(x,-)dxIt  +
R 0

t
+ f f [-u t + (Um )4x ]dxdt = 0
to RS0

for all 4 satisfying

E 4, j l(STl) nL"t (ST) and

(1.4) x -) O(x,t) is compactly supported in IR

uniformly in t

and for all intervals [t0 ,t] t_ [OT]

The pressure v in the fluid is connected to the

¢-4 density by

(1. ) = m-1

up to some multiplicative constant, and it satisfies

+' m 2
(1.6) vt mvv xx - (v) 2in ST

(1.7) vo(.) = v(.,O) = u 1

......-...... . . . .
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.° "The Cauchy problem (1.6)-(1.7) is also interpreted

in the weak sense

2

vEC(ST) ; vx& L (ST)

and

(1.8) f v(x,-)O(x,.)It dx +

JR 0

t -m(m-2) 2
+ f f [-vo t+mvv~ -+-M- T (V x) 2]dxdt 0
t 0  R

for all * satisfying (1.4), and all intervals [t0 ,t]

[0,T]

.4j Existence and uniqueness of weak solutions of (1.1)-

(1.2) was first proved by Oleinik-Kalashnikov and Choui-Lin

in [15], and the equivalence of (1.3) and (1.8) is due to

Aronson [2].

*
/  A consequence of the degeneracy is that u(,t) and

v(,t) are supported in a finite interval

The curves (t,C,(t)) , (tir(t)) , which we refer to

as the left and right interfaces are Lipschitz continuous

and monotone decreasing and increasing respectively (see

- [3]). The interface curves and the pressure v are con-

nected by the Stefan-like conditions (see [3,11])

h°:
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.-..:?:"{ tlim vx(X't) M-l1 r t

(1.9) r

I"'rlin v (x,t) - m- (

L~ i t hle(t) m (

It should be noted that conditions (1.9) are not part

of the original problem, but rather are known to be satis-

fied by the unique solution of (1.1)-(1.2).

Nevertheless our algorithm will be based upon suitable

discretization of both (1.6) and (1.9).

We now give a detailed description of our algorithm.

Let Ax and At denote increments in x and t

and let

Xk kAx , k z tn nAt , t4 u{O}

The approximations to v(xk,tn) , (tn) and r(tn)
will be denoted by v n n ;In  respectively.

Vk C repcily

Actually we shall describe the computations only for

the right hand interface; the computations near C are

completely analogous. We therefore suppress the subscript

n nand denote Cr by C

0 0To start the scheme let vk = v0(xk) and C =(O)
k 0 k.

Next define

K(O) max 1k x k+l < 0

and



0
s = X K(O)

1

Then in analogy with (1.9) we compute from the equation

SK0 + m () Atr, = rn m---i- S

1 0
Observe that s 0 Ax and > I;

Now given Cn+l C n and vn  for j E z we proceed

as follows. First define

K(n+I) = max {k xk+1 < n

(1.10)

K(n+l) = min {k Xk >

t S n+ 1

tn+l

tn

x

XK(n+l) n n+l

Fig. 1.

n+l from

Then for K(n+l) < k < K(n+l) compute vk

the finite difference equation
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n+l n n  n n n n
V -v v -2 v+v V -v(111) k k = vn + k+l"k k- + m k+1- k-i 2

2 At - k E:) 2 + i- r )
(Ax)

where c > 0 will be chosen later. Observe that we do not

enforce the difference equation across the interface.

Next let

n+l(1.12) S n 1 = - XK(n+l)

and observe that

(1.13) Ax Sn .+l

"" n+l

Then for XKn+l) x n+l compute vk from the

linear interpolation

n+l-
n+l r. xk n+l(1.14) vk - S VK(n+l)
n n

Finally set vk = 0 for xk 0 n+l and compute n+2 from
k n k

n+2 n+l m v Sn+l(1.15) K(n+l) At
m- n+1

We shall prove that vn ' 0 for all n and k so that
k

by (1.15) n+2 n+l Thus the support of the approxi-

mate solution increases monotonically in t

In addition, the fact that s > Ax insures thatn

numerical instabilities are avoided in the computations (1.14)

and (1.1S).

........:' .. - ".. : ,"ii ' .. . , ,. .
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I:troducing the notations

At
At -rAvk Vk+l 2vk + Vk l

(Ax)klvk kl

we can rewrite the difference scheme (1.11) in the form

ill n _ n

n6 n+l nn + ma k+1 k-i 2
=(1.16) Vk k -(Vk 2 m)A2

We shall assume throughout that

[Al] 0 4 v0 (x) 4 M , Vx E R

[A2] Iv0 (x)-v 0 (y)I < yo Ix-yl Vx,y 6 R

. [A3] c is of the order of Ax and

C > 9 m---2 Y0 Ax

~~m 9yZ~y0
'p

[A4] 2mo [M + e + = yoAX] 1

where M and yo are given positive constants. Since

e = O(Ax) , condition [A4] on 0 is seen to be a slight

strengthening of the usual parabolic stability condition.

We let h denote the pair (Ax,At) , and we construct

approximate solutions vh and approximate interface curves

C h and c h by piecewise linear interpolation. Our results

t r

I
..... ,
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may be summarized as follows

mh
11 v 1 < C(T) (Ax) p

[II] vh vx  in Lq(ST) , for all q E [1,-)
x xT

.-. ":;[111] 11 (ih h ( ' r l , 0 T <  C(T) (Ax)P/2

where p is defined in terms of m in Theorem 4.1 below.

Further comments will be made in Section 6 about these rates

of convergence, where we present and discuss the results

of some numerical experiments.

The idea of exploiting an interface condition such as

(1.9) for computational purposes seems to have been first

used by Hilber [10] in connection with the one-phase Stefan

problem (see also [7]).

We remark on the introduction of the vanishing viscosity

. .. If E were zero, the continuous analog of (1.11)-

(1.15) would be overspecified. The artificial viscosity e

thus seems to stabilize our finite difference scheme. More

specifically, the presence of the c allows us to derive a

hlower bound for vxx (in the sense of distributions). This

in turn yields a uniform modulus of semicontinuity for vh

hand via the interface condition, for It is this semi

continuity which is crucial in proving the convergence of

the approximate interface curves, as well as in estimating



the rate of convergence.

We briefly comment on related, at our knowledge available

results. In [9] Graveleau and Jamet obtained solutions of

the porous medium equation and related equations by employ-

ing a difference scheme similar to ours. However their

scheme is applied in all of {t > 0} so that approximate

interfaces are not computed. Moreover numerical evidence

indicates that the supports of their approximate solutions

spread out too rapidly in time. Thus computing the inter-

faces by "shock capturing" seems to be unsatisfactory.

While this paper was in preparation, Tomoeda and Mimura

[13] informed us that they have recently derived an inter-

face tracking algorithm for the porous medium equation.

Numerical evidence suggests that the approximate interfaces

computed by their scheme are accurate, but they are unable

to prove this result.

In addition their scheme is somewhat complicated to

implement, since it involves solving Rieman problems for the

Burgers equation at each mesh point. Both their scheme and

ours suffer from the parabolic stability condition

2
At = o[(Ax) .

The paper is organized as follows. Section 2 contains

the derivation of basic estimates. Specifically we prove

the finite difference analog of the following facts, which

are known to hold for the exact solution v of (1.6)-(1.7):
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(1.17) 0 < v < M

K (1.18) IlV . YO (see [21)

(1.19) Iv(x,t 2) -v(x,tl)I < CIt 2 -t 1
I / 2  (see [8,121)

F:7

n-V 1 and

| (1.20)

.:ii ~~I Hx(.,t),vt( -,t),IRI (see []

In Section 3 we demonstrate the convergence of the

approximate solutions and interfaces to the correct ones

by making use of various compactness arguments.

The error estimates are proved in Sections 4 and S.

Finally in Section 6 we present and discuss the results

of several numerical experiments.

Throughout the paper we make the convention that C

shall denote a generic positive constant depending only on

m , M , yo and some specified time T

!7-



2. Basic Estimates

We begin the analysis by establishing maximum principles

:9for vn and for the discrete space derivative

w n k-l
k Ax

We assume throughout that the initial function v 0  satisfies

assumptions [Al] and [A2], and that the mesh parameters E

and a satisfy [A3] and [A4].

Lemma 2.1 The bounds

(2.1) 0 v ~n m
k

and

(2.2) IwnI < Y

hold for all k and all n > 0

Proof. The results hold for n =0 by hypothesis.

Proceeding by induction on n ,we rewrite the last term

in the difference equation (1.16) as
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n nn Vn
mAt Wk+1 +k-i Vk+1 Vk-i

Rearranging, (1.16) thus becomes

Vkn+ 1 =[1 -2mB (vn c E]vn

(2.3) + [ma(V n + F- m f3Ax (w n +n

=-j1 k1 k )]k+l

+[ma (v + C) ~A (wn +

Using the induction hypotheses (2.1) and (2.2), we have

that the coefficients of vn and v' in this expressionk k+1

are bounded below by

YO Ax
1 - 2m6(M + e) and m$(E - IT

respectively. Since these quantities are nonnegative by

- ~ [A31 and [A4], (2.3) shows that v n+1 is a convex combination

n n nn+lof n n and vn This proves that 0 < v M
vk vkl_ k+l 1

for k < K(n+l) .When k > K(n+l) ,these bounds follow

from (1.14).

We prove (2.2) first for k < K(n+l) .Rewrite (1.16)

as follows:

(.)n+l =n + (n + (n -nA + mAt wk+l+wk2
k k m~k £ k+l wk)X
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n+ 1We subtract from this the equation corresponding to vk.l

and divide by Ax . Using the discrete product rule
and+

akbk ak-l bk-1 + (bk " bk-)

bk+bkI (ak
2 k ak-1)

we obtain

n nVk +V,.:.n+l n Vk+k'l + )A n

k + m 2 k

,.'-n _wn n

nn

,a'x n w ~ k-l
, k  2

- k- +) w~
(2.5)

+ at S~x k+ 2W -+W n w n_
• + 8M= x 4 " ( k + l  k 1kl

so that

vn."n+l n 2k I- n )w

(2.6) W (1 -MB(~ ( + E) w 1 +(a-bki

. k wh k
(2.5)

m $Ax wnl + 2mw n Wn~ wnl wn+m-T -T4- Wk k Wk-l (kl k W 1-)

," q:.This equation has the form

nln n n
(2.6) W (1 -2a)w k  (a b)Wk + (a -b)w -

where

I
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n n

(2.7) a = m( k k-1 + c)

and

(2.8) b =m aAx (wn + + n

By the induction hypotheses (2.1) and (2.2), a and b satisfy

(2.9) mae < a ma(M +

and

w'.g 8yoAX

(2.10) Ibi m(m< ) 7

Thus, using the mesh conditions [A3] and [A4], we obtain

immediately that 1 - 2a and a - IbI are nonnegative.

Hence (2.6) shows that wn+l is a convex combination of

n n nw , Wk_ , Wk+1 , and so satisfies the bound (2.2).

Finally, we prove (2.2) for xk near the interface.

Thus let k = K(n+l) and let sA = n _ , so that

n n

. ~ ~Wk+I = -v/s

Using the difference equation (1.16), we then have that

?.4

•°,~~.- ....-.....--. ... +.... . .
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n+l

-W n !l k 1 (v n + ma (v n + )( n+ wn) Ax
+ 1n+l

n ,n
mAt n 2 kl Wk2 n 2

+ - (Wk 1 ) +k+)

n
- k+l(s ' m n At)S n+I (n -- 1 wk+l

n n) 
AtA+ E: 3wn+wn

(W k+1 wk k + -I 4
i+1

But

s s mAt n
n+1 n  -m - Wk+1

by (1.15). Therefore

(2.11) Wk+1 n + C w Wk )

where

-. Again, using the induction hypotheses (2.1) and (2.2), we

i, obtain that

(2.13) mAx .- + c M +-

r:" n+ 1

the mesh conditions [A3] and [A4] then imply that 0 c 1

" ." ' -" -' -: " -' " S .' C .t' ". '. -. -,. T- ,. 
m

-em, "' -- - .m,, ,m - .,m -,. - ~ ' . ' .
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Thus (2.11) shows that w k is a convex combination of

Wn an w n and so satisfies the bound (2.2).
n~l ksbtwe
n+l

Finally, when k > K(n+l) + 1 ,w is between

n+l
wk+1 and 0 , and so again satisfies (2.2).!!

The bound (2.2) for w , together with the interface

condition (1.15), shows that

I n+Al~I C:. I at c

Since At = O(Ax 2) by [A4], it follows that s < 2Ax + 0(Lx 2 )

(see (1.10) and (1.12)). Combining this with (1.13), we

therefore have

(2.14) Ax 4 sn < 3Ax

for small Ax . Actually, any upper bound on sn/Ax will

suffice for our purposes. However, for the sake of simplicity,

we shall make use of (2.14) without mentioning the precise

conditions on Ax which justify it.

In the next lemma we establish a lower bound for the
n

second spatial differences of vk . This lower bound will

nanprovide a uniform modulus of semicontinuity for w and,
kn+l_ n

via (1.15), for as well. This semicontinuity will
At

be crucial later for obtaining error estimates for the approx-

iwate interfaces.

* .. ,-
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Lemma 2.2: Define K by

:., ~K = m'm+1) LI
1M-

Then the bound

AVn n n 2vnV

(2.15) k v+- k k - K

Ax Ax2

holds for all k and all n > 0

Proof: Denote the variable in question by Zk . That is,

.V n 'n n
n Avk k+l-W k
Sk = Ax

Ax

Now, if 0 < t 4 KAx then
n

j"n < k+lI+lwkl 2YO K
|Zki Ax Ax t

n

We proceed by induction, assuming that (2.15) holds

at time level n ,and that

(2.16) tn+1 > KAx

The first case is that in which k , K(n+l) 1 so that both
n+ n+l
: w + I and w k+ satisfy (2.5). Subtracting and dividing by

Ax , we thus obtain

....

.. ."
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n n n
v +2v +

i-. n+l n Vk+l +  k k-1

k Zk+mS( 4 k + ) AZk

v n n n +AW n". m~k+l-vk-l) k+l

+ MO(i(~+Ak"-"2Ax 2 "

[wm ax n (2r4l)( n +w) + Wn](Z+ n
m-1 8 [k+2 k+1 k k- k+1 Zk-1)

+ M Ax n + n- (n X-n n n n
m-i 8 k+l k k-l) (k+2wk+wk+l-Wk-l)

We rewrite the third term on the right as

mAx n n_
k+i k kZ+l kI

and the last term on the right as

m At n n n +2Z +Zn1

The result is that

n+1 k n )n nzk = (-2p)Z + (p+q)Z + (p-q)Z
i (2.17)

(2.7) n + 2mZ + Zkl)(Zk+l + 2Zk +

where

vmS( 4 + E)

p4
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m Ax nn w) w

--- T [wk+ 2  + (4m 'l)(wk~l + Wk) + Wk 1 ]

and

m Atr =m-T- -F

We shall show that Zk in (2.17) is an increasing

function of each of the quantities Zn  n and Z n
k ' k-i' k+l

Using Lemma 2.1, we have

n z+l-a lZi = (1-2p) + r[(2m+2)(Zjn+
1+Z)_ + 8m Zk]

. (1-2p) + -L[(2m+2)(wn2 - W + (6m2)W -wk)]Wkl k+- (6--2 (k+1- k

-2m(M + c) - m At "16my
~ 1 2in(M E4 iiiT Ax m 0

= 1 - 2mS[M + c + ,, yoAX]

by [A4]. And similarly,

kn p ±q + 2r + (n+1)Z n + Zn

p q + - w[ l + M(wmlk + 
- Wk)]

1 Pk+2 -I Wk 1
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m Ax .2m At .(m2Y
M mS - --8 8my0 - 2m2

3m+ 1 -y AX]
-:= m8 [V - 2iFTy 0Ax]

by [A31.

Thus Zn +l  is bounded below by the right side of (2.17)k"

with Z Zk 1 and Z k+l replaced by -K/tn That is,

Zn+l + - m(m+l) (K) 2 Atk t --m- T-tt
:'' n [i m 1 n'

K.![1K -m(m+l) K

n

K n-l> K n K
tnn n tn n+ tn+l

as required.

There are several cases to consider in order to establish

n+, n+l
the bound (2.15) for Zk when xk is near n Now,k k

when Zn+i > 0 , (2.15) is automatically satisfied. We may

therefore assume that Zn+l < 0 ; that is, that
k

n+1 n+lVk+l Vk-1 n l

2 <k

n+l n+ 1
But this shows that vk is positive and that vk is not

computed from the linear interpolation (1.14). Therefore it
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must be that k < K(n+l) . Since we already dealt with the

case that k 4 K(n+l) - 1 we may therefore assume that

k = K(n.+1)

n+l n+1
Thus wk and wk+ 1 satisfy (2.6) and (2.11) respec-

tively. These equations may be rewritten

n+1 n n
w W cAxZkk+1 k+l k

and

wk = wk + (a+b)Ax Zk (a-b)Ax Zk

where a, b, and c are as in (2.7), (2.8), and (2.12).

Subtracting and dividing by Ax , we thus obtain

(2.18) n (1-a-b-c) Zn + (a-b)Zn-k = lab k k-1

We checked in the proof of Lemma 2.1 that a-IbI> 0

And, using (2.9), (2.10), and (2.13), we have that

(M4-1) N3yAx yAx
1-a-b-c ) 1- m(M + e) M rni) 2 rn-i[::. ~~m-1 2 mMM4 :+.-1--

=1- 2mI[+ e m+ 3

which is nonnegative by [A4].

- .o°
. . . . .
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Finally, using (2.9), (2.10), (2.13), and (2.14), we

have that the sum of the coefficients in (2.18) is

1-2b-c < 1 + m(m+l) Y0Ax

m-1 YAX m----T"

Using the definition of K , this bound may be rewritten as

8 YoAx 1 mB

1 + ----- [1 + 3(m+1] -

And using condition [A3], we then find that

-' ~ 2BoX20 At

1-2b-c 4 1 - ;r1 - T

On the other hand, we have from (2.16) that tn+l >, KAx/2 y0

so that

1 2yO At

Therefore

1-2b-c < 1 - - n

and (2.18) shows that

z n+l> K n - K
k t n iT -

Fn'nq
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Remark: The constant K = (m-l)/m(m+l) is the best possible

as it can be verified on the Barenblatt-Pattle solution [6,16]

(see also [5]).

We can improve the bound (2.15) by imposing additional

regularity conditions on v0

Corollary 2.3: a) If v0  is a concave function, then
m0

Av
(2.19) k 0

Ax

for all k and all n 0.

b) If there is a constant C0  such that

v0 (x+h)-2v 0 (x)+ v0 (x-h)(2.20) h1 >- Co

h

holds for all x and all h > 0 , then

Av
(2.21) c

Ax

for all k and all n > 0

Proof: We showed in the proof of Lemma 2.2 that, in

all cases, Avn+l/Ax 2  is an increasing function of Avn/Ax 2

and Avn+l/Ax 2 . The bounds (2.19) and (2.21) then follow

easily from (2.17) and (2.18). II

4 ( 1 L " i m , , n . , . , . , , _ , , m d . . , m . , - ,.. .. . . .. - • - - • -
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Next, we obtain a bound for the discrete time derivative

near the interface.

Lemma 2.4: There is a constant C such that

m n+1 n,':Vk "Vk( C

holds for n > 0 and k > K(n+l)

Proof: We use the symbol 0 () to denote dependence on

mesh parameters. Let k > K E K(m+l) and let s n  n - Kn@

Then from (1.14) we have that

k<: k lv 1 nlxk Vn+l k "Xk

n+l n n+l n

K K 1 Xk -k n
-0(1) + -( s nl KSn+1 n

The first term on the right can be estimated by using the

difference equation, (1.16):

n+l vn n n
K K - m(vn+E) K K + O(1) = o(1)

At K A

since vK+E = O(Ax) And the second term on the right is
-. a

..' s' -)_ [ s +O(At) ] ( n -

O(Ax) •'n t -- 0(1) . //
s n Sn+ IAt

. .-- .
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Lemmas 2.2 and 2.4, together with the difference equa-

tion (1.11), now imply the following bound for the discrete

time derivative.

Corollary 2.5: There is a constant C such that

-n+l- n"" Vk "k I
(2.22) At > - C( +

An

holds for all k and all n > 0

In the next lemma we use the one-sided bounds (2.15)

and (2.22) to derive LI  estimates for Avn/Ax 2  and" v + l n k

v k ~vk
At

Lemma 2.6: a) For a given T > 0 there is a constant C

such that

AVnxk At Ax 4 C(l + -
- k7 A~fx v . v 1x -

Ax A t

holds for tn < T.

b) If the initial function v0  satisfies the hypothesis

(2.20), then

A v k v -v
k tk Ax

Ax E k •

4i , , ' - ---a' k , - '
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c) And if v0  both satisfies (2.20) and is concave, then

An+l n

At < -
pVk .Vk

Proof: From Lemma 2.2 we have that

AVn AV
kj k + 2K

t

n
We multiply by Ax and sum over k , Since vk is zero

outside an interval of length C(l + tn) , we obtain that
n

Avnk
;Ak Ax < t (1+ t n )

Ax t n=Ax. n

The other bounds in a) and b) are proved similarly. c)

follows from Corollary 2.3, the difference equation (1.11),

and Lemma 2.4. I

In the final lemma of this section we establish the

H6lder continuity in time of the sequence {v}
K.

Lemma 2.7: Let T > 0 be given. Then there is a constant

. C such that the inequality

n '.

*~l iv n _ ,m1  ,,.1/2 Ax C -1/2) _tro1/2l--k VkI LC(Itn-tml x¢ + + )Itnm

holds for tn and tm in [0,T] and for all k.
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Proof: Fix a point (Xk ,tno) and let t >t be

given. Let Q be the rectangle

[Xk P,Xk + P] x [tno,tnl
k0 0o 0 tn1

where p is a multiple of Ax to be chosen later. And

define the quantities

n
.. n o

11= max Iv I
no~n~n1  0  1(o

(2.23) c 2m(M + c) + m yOp

dk - Vk -p ) + c(tkotn n]

n 0 po 0 0 yiduto

We shall show that Uk  0 for (xktn) Q by induction
kkn

on n. When n n and Ix-xk p , we have, using

Lemma 2.1, that

•n o  noU. < V vk  -O <o 0
Vkk k Vko

For the induction step we consider the following

three cases:

iXk-Xk = , k > K(n+l) , and IXkXk I < p with k K(m+l)
0 0

: 9 
°  

." ". - - -t - n
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In the first of these, we have that

1n
"n+l n+l n+l n+l n0

(Vk k ) +(Vk vk) OPI0 0 0

which is nonpositive by (2.2) and the definition of H

n+l
In the second case, we have vk 3 y0 Ax so that

kn~ <~n

n+ 3 yAX - y0puk

which is nonpositive provided that

(2.24) p > 3 Ax

For the third case, we employ the linearized difference

operator L , defined, for a given sequence Z, by

~n+i
LZn+l - Zk n AZn

k Ax

n n n
m k+l k-l Z k+1 Zk-I"m-1-T 2Ax A x )

Applying L to n and using (1.11), we find that

n n

UI+1= H [M- 2 kn 1 +E + L k+ -kXk1
k k rni 2Ax X 2 xk)

p 0

so that, by (2.1) and (2.2),
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LU 1 <H mLUk 1  7 [-c + 2m(M+E) + Yj P ]

0

by the definition of c , (2.23).

On the other hand, we can rewrite the inequality

LU 1  0 in the form

kn

-n+l 4 [1 2mS(vn+c)]Uk
Uk k [1k

+[ma(v n+E) - m (vn n1]nk T-m-T k+lV k.1 ]k+ 1

[mS(vn+C) + SM (Vknl-Vknl)lU 1

k jjT +k

The coefficients of U n  on the right hand side of this
J

inequality are exactly the same as those of vn  in equation

(2.3). And we showed in the proof of Lemma 2.1 that these

coefficients are nonnegative. We therefore have that Un+ 1

is a convex combination of Un 1  n k and n , and

so is nonpositive by the induction hypothesis.

Setting k =k in the result Un < 0 we thus obtain0 k

that

n  0 1c
k " V o S

I
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where s t - t In a similar way, we can establishn n

the same inequality for v - Taking the maximum overVk0  k 0

.. n E [n0,n1 ] , we thus obtain

(2.25) H H Y o c + s

We shall choose p so that c< 1/2 . Specifically,

p should satisfy

Pi 3Ax . p < p+ 4Ax

where p1  is the larger root of the quadratic equation

'2 2 2m

- 2cs = P -M y s - 4m(M+s)s = 0

An easy computation shows that p1 = O(s + sI/2) = O(s I/2)

for tn. 4 T . And p > 3Ax , as required by (2.24). Since
1

E4.- 1/2 , (2.25) becomes

p

I! 4 2yo0 p 2y0 (pI  4Ax) 4 C(s 1 / 2 + Ax)

In particular,

- n1  no.: ::I Vk0"VkIl C(ltnl-tn j112 Ax) .*I

We remark that the proof of the above lemma is the discrete

version of an argument given by Kruzkov, [12] and Gilding [8].
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3. Convergence of the Approximate Solutions

Let h denote a pair (Ax,tAt) whose elements satisfy

the mesh conditions [A3] and [A4]. We define approximate

interface curves t i h(t) and t t- Ch(t) by piecewiseir
linear interpolation: for tn 4 t < tn+ ,

h (t) n) (ttn

(t) = M-- sn n

n n
where Cr , vk , and Sn are as in Sections 1 and 2; and

similarly for ch(t) . The estimate (2.2) for Vn)/s then
shows that the nets {h(t)} and {h(t)} are uniformly

Lipschitz and uniformly bounded in finite time.

t We construct approxi-

tn+l mate solutions vh (x,t) in

n - an analogous way, as follows.

tn I f r and S are the

triangles in Fig. 3.1, then

Xk X
k k+l

Fig. 3.1

h' n + n  n nt

vh (xt) = Vk (X'Xk) wl + (t.tn)Ok+ , (x,t)f Tk ;

andI-

-vh(xt) vn+ (X-X n l + n (x,t) S •

a.l,
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fiere

n n n+l- n
n kk and na k vk kx At

It follows immediately from Lemmas 2.1, 2.2, 2.6, and 2.7

that the functions vh satisfy

(3.1) 0 < vh(xt) < M

(3.2) av < y a.e.

(3.3) IL (x,t) , (xt) for t > 0 are

finite measures in JR with mass

a - f IIhi < C (I + 1)

*and

(3.4) Ivh(x,t+s) - vh(xt)I < C(T) s / 2 , 0 < t < t+s < T

Throughout this section we fix a time T and a rectangle

Q = [a,b] x [0,T] , where [a,b] is large enough to contain-. h (
* the supports of v h,t) for all h and all t [ O,T]

'.-i (S e e (1 .15 ) an d (2 .2 ) )
h h h

The properties of cr and described above

insure that, for every sequence h. tending to 0 subjecti ; : J
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to the mesh conditions [A3] and [A4], there is a subsequence,

which we index simply by h , for which

h -- v* uniformly in Q

~h h

r, uniformly in [0,T]

dh -- * * in L2(Q), weakly.and x x

Our goal in this section will be to prove that v*,

, and coincide with the exact solution and inter-

face curves for the problem (1.8). Actually, the convergence

of v r and C also follows from the error bounds

which we shall derive later in Sections 4 and 5. However,

the arguments of the present section are much more direct.

hMoreover, we obtain here the convergence of vx in LP(Q)

for all p < * As a byproduct of these arguments, we

thus obtain in addition a constructive proof of the exis-

tence and regularity properties of the solution of (1.8).

We begin by showing that vh w* strongly in LP(Q)x

and that, in fact, w* = v*
x

Lemma 3.1: For any t > 0 the net {vh (,t)} is pre-
x

compact in [a,b]
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Proof: The proof consists of estimating the L1

difference between v h (-,t) and its spatial translates.

Given t > 0 ,choose n so that tn< t<t

Then when h is sufficiently small, 0 < t-At < tn

If we take p = tAx where t is a positive integer,

then it is easy to see that

IVf v(x+P,t) V h (x,t)Idx
R

(3.5)

n+l- n+l
< C(E Iwn+,_wn IAx E kIwktwk IAx)

The first of these sums is bounded by

EEk+t 11"w' Ax 2
~k j=k+l L+ A

n n

~ jk=j-t Ax A

I Av ' I Ax<Kp
Ax -3 A t-At

by Lemma 2.2. Dealing with the second sum in (3.5) in a

similar way, we find that

(.)h h C
(3.6) f I lv(x+P,t)-v~ (x,t)ld
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holds when p/Ax is a positive integer.

When p1 <Ax, IVh(x+p t)-vh(x,t)l will be zero
Whe 0 < x [x[ xlt

except when x is within p1  of the nonhorizontal sides

of the triangles T and S Thus

h k

R

<.CP, wn -wn n+l n+l

k k+l k+ Xk IWk+lWk I)

P1

But this expression is . times the right side of (3.5)

with Z taken to be 1 . The computations we made above

therefore show that

h lh cp

R

Combining this with (3.6), we see that (3.6) now holds for

all p > 0 . The conclusion of the lemma now follows from [1]. II

Lemma 3.1 thus shows that {v x  has strong limit

points. In the next lemma, we prove that these limit points

h
can be identified as the derivatives of limit points of {v

Lemma 3.2: Let vh denote a sequence of approximate solu-

tions which converge to v* uniformly in Q . Then

Vh V v* in LP(Q) for every p £ [Ic)
x x

14o
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Proof: By Lemma 3.1, every subsequence of {vh(.,t)}
1x

has a subsequence which converges in L1 (R) . Thus let

{h'} ( {h} and let vh (. ,t) converge to a function

E(x) in L (R) . We shall show that &(x) vx ( t) a.e.
1

First, if E H 1(ab) ,then

b h'
f [vxh (x,t) - (xt)][vh (xt)-p(x,t)] = 0

a

We take

[ p = n¢+ (l-n)v*(',t)

1h'

in this relation, where EH 0 (a,b) . Since v v*

uniformly and vh (.,t) in L1  we obtain, by letting

h 0 , that

b
T f [ -nx-(l-n)v*(.,t)][o-v*(.,t)]dx= 0

a x xa

Dividing by n and letting n 0 , we then find that

b
f [-v*(",t)][-v*(.,t)]dx = 0
a

for all 6 H,(a,b) This shows that = v*(.,t) a.e.

hThus every subsequence of {v (-,t)} has in turn a sub-

sequence which converges to v*(-,t) in LI(R) . And

therefore the entire sequence converges to vx (",t) in

ax
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L (R) Finally, since 1lvhll. < 0 for every h , we

have that

T_< h 1/dth C(p)[f i h. t)-v*( ,t)ll dt]
x pQ x x 10

by the dominated convergence theorem. //

We remark that the proof of Lemma 3.2 is an adaptation

of an argument given by Minty in [14].

The next theorem contains the main results of this section.

Theorem 3.3: Let v , , and Cr denote the exact solu-

tion and interface curves for the problem (1.8). Then

(3.7) vh - v uniformly in Q

(3.8) vh --* in LP(Q) p <
x

and

(39) h h-39 C h -- r uniformly in [0,T]

We prove (3.7) by showing that limits of converging

hsequences from {v I satisfy the weak equation (1.8), and

so agree with its solution v , which is known to be unique.

Thus let {vh I denote such a sequence and let vh v*

4
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uniformly in Q so that vh ( , )  v*(.,t) in LI(R)

x x

for every t > 0 . It will be sufficient to show that

f v*(x,.)0(x,.)I T dx +
R

(3.10)

f f [-v*ot+mv*v* + m(m-2) (v*) 2 ]dxdt =0

TR x x 1m1
for all C functions @ satisfying (1.4) and for;< T
0 < T< T

Given such a function 0 , let n= (Xktn) and

consider the quantity

"1 N_ nk n n
N 2-1 - Av~ kIVk+l- Vk12 n(3.11)E = {Ekk At + .2 1 2k-n

(3.11) k22x-x ~~

for appropriate N1  and N2 Now, the expression in brackets

vanishes for R(n+l) < k < K(n+l) And for other

n+l n
,"'. k k
values of k ,we have that - () by Lemma 2.4,

n n n
n Av wk~ -w

and (vn+E)-k - O(Ax) k+lk 0(I) by Lemma 2.1. Thus the
Ax Ax

quantity (3.11) approaches 0 as h 0

On the other hand, we can sum by parts in (3.11) and

match the resulting terms with the corresponding integrals

in (3.10). We shall carry out the details only for the most

complicated term. Using Lemma 2.2, we may rewrite the second

two terms in (3.11) as follows:

0.
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n n n n
n nk+1 Wk 1 k+1 k 2n

-M- 2(i~) + 4]AxAt
-kZ Ax M-

n , -ViE: (11)kJ n2 n xt+ O(Ax)
mZ wk tAx rn-i ~k]Ak

(3.12)
M [ nV k-V k-1n+( 'nI+C' Okk-1 1 n 2 n ]xt+ (x

kn~IW Ax k + k1 Ax rn--I (wk) OJk]A~

m~m-2 nn +m v+ '

rnm~-i) nv) 0kAxAt +kwkxn,(xk'tn)AxAt +O(Ax,

for some [x ~ I xxI We shall show that the second

sum here converges to the second term on the right in (3.10).

First note that, since vh1 (x,t) w wn on Tn S-

n h
wkAxAt =ff v (x,t)dxdt

And, since 0 is smooth and vh is Lipschitz in x and

H5lder continuous in t,

ff ~VhVh v djxct + O(Ax+At 12)AxAt

T~U~

Therefore the second sum in (3.12) is

2 h h
f f mv v ~dxdt +O(Ax)

T R

which approaches

4A
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T2

f f mv*v~x dxdt
T1 R

h h1as h 0 since v v" in L and vh - v* in L1
x

with vh and vh uniformly bounded. The other terms inx

(3.11) are handled in a similar manner. Thus v* satisfies

(3.10) for all appropriate test functions, and so coincides

with the unique solution v of the problem (1.8).

Uo" The proof of (3.7) is based upon the following techni-

cal lemma, which will be used again in Section 4 for the

derivation of error bounds for the approximate interface

curves.

Lemma 3.4: Let { r be a subsequence such that h C*r

uniformly in [0,T] as h 0 . Then for every t > 0 and

for any positive numbers 6 and n ,

""t+n _ 2n

(3.13 f v( (s) - 6,s)ds > m { [ *(tn) *(t) ]

t r mi 2T r r (mFl~t

for 0 < t t + n < T . Moreover, if - exists and is

- positive at t then there are positive numbers 60 and C

such that

(3.14) v( r (t) 6,t) C6

holds for 0 < 6
0
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Proof: Let p , q , and N denote the largest integers

in 6/Ax , n/At and t/At respectively. Then

N+q-1 N+q-1 K(n)n.- n En xA
(n1 V At [vK - Wj AxAt"i (, S)£ K(n) -p(n

* n-N n-N J=K(n)-p+lJ
h

using Lemma 2.2 and the definition (1.15) of r ' we have

that

K(n) K(n) K(n-1) Av

z w Ax z (n) + 2 2 Ax]Ax
J=K(n)-p+l J j=K(n)-p+l t=j Ax

K(n) C[h (t h (t

rnr+1 r n 1 px
.. m At m+1 tJ =K(n) -p+l n

m-1 rtn+lrtn PA (pAx)2]
- L At m+1 t

n

Substituting this into (3.15) and discarding the nonnegative

term vn we obtain
K(n)

(3.16) N+q- 1n At rn-i h - h(tN)]PAX - (pAx) 2(qAt)

. Now (3.13) follows by letting h - 0 and using the uniform

convergence of vh and h

If - (t) > 0 , then there is a positive number o

" such that'I

I
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c*(t+ n ) > *(t) +pn
r r

. for small n . For such n , then, (3.13) shows that

M- t6n 6 2nTf v(C(s) - 6,s)ds > m n Tn - 7 ]
t r (rml T

- . Dividing by n and letting n - 0 , we thus obtain that

1. 2V*(t) - 1 > (ml- 1
r m 2 (m+17)t

if 6  60

Proof of 3.9: Let {C denote any subsequence con-

verging to a curve * uniformly in [O,T]. We shall show

that r*(t) = r(t) for every T . First observe that,

* since v h(xt) = 0 for x h n(t) , v(x,t) must be 0

for x > l*(t) ; thus r(t) < C(t).:..r ro r >

Now suppose that c <  on (t,t+n) with Cr(M) =*(i)
r r r r

Then since cr is increasing, there must be a time

t E (t,t+n) at which dC*/dt exists and is positive. But

then (3.14) shows that v(ir(t) - 6,t) is positive for small

6 . However, this implies that C (t) > *(t) , which is
r r

a contradiction. Therefore there is no maximal time t for

which C*(t) = r(t) for 0 < t < And since c and

agree at t - 0 they agree for all t . Similar argu-

h
ments hold for (t) .I
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4. Error Bounds for the Approximate Solution and Interface Curves

In this section we prove the following theorem.

Theorem 4.1: Fix T > 0 . Then there is a constant C such

that, for 0 4 t 4 T

(4.1) Ivh( , t)-v(. ,t) II,4 Cmin [Ax logAx)3I , 1 2 +Ax]
'R t

and I 1
!(4.2) 1 h tl-CMl 4 C tm+I (AxalllogAxl) T p+3)

where r is either c, or Cr H Here

• { i , l<m<2

2 m 2=M 1 2 4 m

and

m+l

m 2

i" m~l l <m< 2

m+l 2 4 m

We remark that, if the initial data v satisfies the

hypothesis (2.20), then the term jlogAxj may be omitted

from the bounds in (4.1) and (4.2).
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The proof of Theorem 4.1 will be given in a sequence

of lemmas. First we introduce the weak truncation error

associated with an approximate solution. If 4 is a smooth

function satisfying (1.4), define

t 2

(4j(v,,tt 2 ) f[vt + m(m-2) V2O]dxd t
(4.3)) f f[ mvv x fxd

t IR iF

Thus v is a weak solution of (1.6) if and only if

J(v,o,tl,t2 ) = 0 for all and all intervals (tl,t 2 )

The weak truncation error associated with the approximate

solution vh is then the functional J(vh+ ,*,t1 ,t 2 ) . We

have the following estimate for J

Lemma 4.2: Let f satisfy (1.4) and assume that ft and

f are in L(ORx[0,T] with f(x,T) = 0 for all x . Then
" 2-m

if ( f,

• "(4.4) d(v h +E, ,6 ,T) [ < C III fIII Axa I log6(

where

"-III f11 = 1lflo 11 1 ft o +1 11lfx l1
CO t M

The proof of Lemma 4.2 is quite technical and lengthy.

We therefore postpone it to Section 5.
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"h

Next, we define functions u and u by the relations

1 1
M1 h  h Ei-u v and u= (vh+)

In the following lemma we exploit the above estimate for

*h m+lJ to obtain a bound for u - u in L

Lemma 4.3: There is a constant C such that

T b h mlT h
f f ju -ulm+idxdt + f[f((u ) m u ) dt] dx <
0 a R 0x

(4.5)

m

< C [L(u,uh) Axal1ogAxj+ (Ax) - ]

where

T
L~uuh) - II(uh)m-umllIWRx [OT] + IIf((Uh)m-Um)xd-l R x [OT]

t

Proof: Let € and f be as in Lemma 4.2. Then after

integrating by parts in (4.3) and substituting, we obtain

'" TJh+ T (mlT h h M
J~~~v ~ IE06T M1 [utf + (u )xx]dxdt

(4.6) (i-i) [-f uh (x,6)f(x,6)dx

T h h
-f f (u ft-(u )f )dxdt]
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We shall replace 6 in these integrals by 0 . The

resulting error in the second integral on the right will be

no more than CIIIfI116 . And to estimate the change in the

first integral, we use the fact that u is 1llder con-

tinuous in t , which may be established as follows. When

L: m E (1,2] we have from Lemma 2.7 that

u h(x,t2)-u h(x,t l) I < C Iv h(x,t2) (X,tl)I

< C It2-tlI 1/2

And when m > 2

h-" h m-ml1 _ h m-l1
lh(x t h (x ,t1 )- < uh(xtm- (x,t1 ) 1

IVi h I(x't 2)vh (X'tl1)1 < c It 2- tl1 1/2

Thus uh is H61der continuous in t with exponent a/2 ,

and

h h
R

We thus obtain from (4.6) and Lemma 4.2 that

(x,O)f(x,O)dx + f f [uhf (uh)mf ]dxdt

4 CIII fill (Ax'I log6I + / 2
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Now subtract from this the weak form of the original equation

for u , (1.3), and take 6 = Ax2 . The result is that

Th h m m
f f [(u -u)ft- ((u )m-u ) f ]dxdt
0OR

(4.7)

4C IIIf III Ax, logAxi

We have used here the fact that

-- :'"llu(',0)-uh(-,0)ll. , 4 CAxa

which follows directly from the definitions of u and uh

and from the Lipschitz continuity of v0

In (4.7) choose

m

f(x,t) = H h m-um](xs)ds u)(T-t)E
T

-*. It is clear that f satisfies (1.4) and the conditions of

Lemma 4.2. Observe also that

m
T T h mi Th h_ h m- m- -T
f f (uh-u)ft f f (uhu[u um-
0 R OR

T b ,m+h cm
Sf f I u l-ul - C

0 a

and that
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h m- m 1 m m2
U u f U T u [ ) (x,s)ds]

so that

T m rn 1 T
f f (u h) -u m J £x f[f((u ) M-u ) (xs)ds] 2dx
0 IR T = " 0 x

Now (4.5) follows by making these substitutions into (4.7). //

The next lemma contains the corresponding estimate for

h
the error in v .

Lemma 4.4: There is a constant C such that

T"b h hf f Ivh-vlPdxdt < C[L(u,uh)Ax IlogAxI + Axa m]

0 a

where L is as in Lemma 4.3 and a and p are as in

Theorem 4.1.

Proof: When m > 2 , we have

m-2
h h m-1 M-1 ii1 hj(v +C)-vI = j(u ) -um I < (m-1)M Iuh-ul

And if 1 < m < 2 , then

1 1 1
h iiTh iiiT iiT - h

,(v +E)-vf m- T < 1(v +E) -v - lu -ul

w"

S"
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Since E = O(Ax) , we have in either case that

hh_ m+l + )

Iv hvIP < C(uh-u + Axp)

The conclusion then follows from Lemma 4.3. //

h
In order to deduce the Lm bound for v-v from the

above LP  bound, we shall require the following interpola-

tion inequality.

Lemma 4.5: Let z be a continuous function on ST = Rx[0,T]

with support z(.,t) c [a,b] for t E [0,T] . Assume also

that

a) z E L (ST)

and

b) zt(.,t) E L OR) with

-"CO-'."i-Z Hz (',t)o Ult
t 1 t

Let p [1,-) and t > 0 be given. Then there is a con-

stant C independent of t such that the inequality

Iz(" ,t) FII 1z

PST
h s rt(ott)P

~holds for 0 < t < T-t .Htere



so

F~z) Ilz 11sup nlz(*,spill 11 z lI p 3
Fxz is T t s T p IR 0 X cOOS T

Proof: For t > 0 we have

(4.8)

4 C li z x I.0I~~

where

Differentiating the definition of y(t) ,we obtain

dlz.tl~ liz .t l

Combining (4.8) and (4.9), we thus obtain

(41)y(t)p-lt < CYt P+lZIl 1zz )O
TT

sota

p-d



Now let x(t) be the cut-off function

'"" { ~ 0 t <T'<<T

x(t) =
.. 1- ~[t-(T-) , T- t

1- _MT-e < t < T

Then for q > 1 and 0 < t T-t , we have

.::y(t)
q  = (yx)q lT

"T

q (XY)q-l(IXtY + xd tlh

t

f.. (yq q y-l1ldl )

;"::"-" -- q -1 - (y ld1+ y l
+ P+

- ~ ~ T T--~ l+ + I{)

Now choose

q = p(p 3) >1

. and use (4.10) to estimate the second term in the above

integrand. The result is that

Sp (p+3) T 2p p-1

y(t) p [f y(t)Pdt] sup [y(s)p+1 + liz xp+1 z(,s) ] .
0 t<4sT ST

I- "teg
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Using hypothesis b), this may be rewritten as

p (p+3) 2p 2-

P+ P+1""
(4.11) yM t) 9-l < C ,ST sup I1z(-' ,R11+ + C11 z 11

Tt<,sT T

Now by (4.8) we have that

(4.12) 1z(. t),1 < C 1z ,1p+ Y(t)p+
PIR, x O ,b T

The result then follows by substituting (4.11) into (4.12). //

We can now prove the first half of Theorem 4.1 by applying

the interpolation inequality of Lemma 4.5 to the LP  error

"* bound in Lemma 4.4 as follows.

h
_ -. Proof of (4.1): It is clear that v -v satisfies the

first hypothesis of Lemma 4.5. In addition, hypothesis b)

is satisfied because of (3.3) and the results of [5].

(Alternatively, we can observe that the conclusion of Lemma

4.5 remains valid for limits of functions which satisfy

hypotheses a) and b) uniformly. And v is such a function

by the results of Section 3.) Replacing T-C and T by

T and T+l respectively, we therefore obtain that

i. .i , h< c vh

I vh( t) -v( t)llo -- "-1 v v1i +

.. ...

,'° .oT

d"° % 7
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Rx[OT+11 and p [1,-) . But if we choose p
"'? where ST xOTI adp 1

as in the statement of Theorem 4.1, then Lemma 4.4 shows that

" llvhvl < CAxIlogAx[

Therefore

vh ( t)-v( ,t) l[1 1 C (Axa IlogAxt)p
t

On the other hand, the H51der continuity of vh and v in

time shows that

1 lvh - t)-v( t) 1,.,, C (t 1I/ 2  + Ax)

for any t . The estimate (4.1) follows from these last

two inequalities. //

Next, we deduce the bound (4.2) for the error in the

approximate interfaces from the above bound (4.1) for the

error in vh. Again we drop the subscripts and denote

h and r by h and .rr

Proof of (4.2): First we refine the result in Lemma 3.4.

Divide (3.13) by n and let n - 0 . The result is that

1
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2'.i(4.13) v(C(t)-y't t ) m~]a. e.

A similar bound holds for v taking q - 1 in (3.16),

we have that

n[(jAx) h(t ) - (jAx)2",:VK(n) -j m (m+ i}tn
n

Since vh is Lipschitz in x and H61der continuous in t ,

and since h is piecewise linear, we can conclude that

(4.14) vh(ch(t)-yt) m-i [h(t)y 2 C Ax a.e.

Now let {vlV 2} = {v,v h } and let and be the

corresponding interface curves. Assume that, at time t

0 2 (t)-1 (t) = y . Then we have, using either (4.13) or

(4.14), thatwh
.vh -  > (v2-v1)(Cl(t),t)I

=2(l(t),t)= v2 ( 2 (t)-y,t)

(4.15)
2

m' -[} 2 (t)y- (m+l)t ] - C Ax

2
-.1. ( C 2 -l )

"CAx

u "1:m
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2Now let F(t) = [ 2(t)-C 1(t] and let E(t) be the

bound in (4.1) for IV hc,)v.)I . (4.15) then shows

that

i-tt F-t 2 t

where we have subsumed the CAx term into E(t) .Integrating,

we thus obtain that, for any 6 > 0

2__ 2__ 2

(4.16) [6) t m+' F(6) +f s m E(s)ds]
6

Now, since

F(6) = h (6)-C(6)] 2

h h 2

4 C62

the first term on the right of (4.16) approaches 0 as 6 -~0

In addition, the integrand in the second term of (4.16) is

bounded by

1 1

Cs- M+ rP~(Axc IlogAx)p+3
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A short computation shows that the exponent of s here is

greater than -1 so that this term is integrable on [O,t]

* We may therefore conclude that

h (t)C~t = F(t) 1/2 < C Ml (AX011logAxl) 2 (p+3) ,,
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5. Estimate for the weak truncation error

This section is devoted to the proof of Lemma 4.2. Since

the arguments are technically involved, even though simple,

we begin by listing a few facts to which we will refer system-

atically. In the estimates to follow we will use repeatedly

the bounds established in Section 2 without specific mention.

Let Tn and Sn be the triangles in Fig. 3.1, and let
h n itoue
v be the piecewise linear interpolated of v introduced

k

in Section 3. In T , can be written in any one of the

following equivalent forms

n n n
vk + l(x-xk)+ ak+l(t-t)

(5.) h nxt n ~ n ~ Xk)+Ol(~nn(w.1) vv + Wn (xnx + Cvk+l k+l k+l k+l (ttn)

_n+l n n t
-vk+1 + Wk+l(X-xk+1 ) + ak+ 1 "tn+ 1 )

and in S it can be written in any one of the equivalent forms

n +wn+ 1n

k k+l(X-Xk) Ok ttn)

(5.2) vh (xt) - vn + 1 + W (x-X + (t- 1

, v + wn+l (x-x k ) + (t-tk+1 k+1 'k+l k n+l)

4°

4"
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Let H (S be a test function satisfying (1.4),
h T

denote with ch the piecewise linear interpolation of the

values - kn and set".:- k O(Xk'tn)

. ~n n n+l nk¢- _C ¢

Ok Ax ' k

n hIn,.k , T can be written in any of the equivalent formsik
n +n nk k +l1(X-Xk) +  k+1 (t't n)

(5.3) h(x t) = +n + n 1(x-xkl) + n +l(tt

n+l n n (t
::.' k+ k~l(X'Xk~l)  Dk+l "n~l

and in Sk

n n+l
k 'k (x-xk) k

(4"h n+l n+ l n) (x,t) = + 1 k (x-xk) + ¢k(ttn 1)

""n+l + x- 1 + n )

k+l k (x-xk+l) k n+1

Remark From (5.1)-(5.2) it follows that vh can be written

.-. as the value of vh at any one of the corners of T (Sk-2k

. respectively), plus terms of the order of Ax . An analogous

fact holds for ch
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5.1 The basic identity

Consider the quantity

(5.5) J(v ,6,T) =

hh m(vh hh m(m-2) h2hff{ + M~ EvxOx + m-1 (v )2 }dxdt

ST,6

where 6 is a fixed positive number. We assume for simplicity

that T - (N+I)At and 6 n0 At for two positive integers

n < N , and calculate the various parts of (5.5) as follows.

h ~ h N h h h h
(i) v todxdT f E Z { ff vht~ 0dxdT + ff v t dxdt}

ST ,6 no 0Z n n
•6Tk k

N n n N 1 n n+l n n 2
E E a kok¢AXAt + E E" [Ok ~k+1 a k k](Ax) At

n0 z n0 z

,-h h h h h

(ii) J 2 =m ff {(v +E)vh + (v) 2 h} dxdT
SST xx x

5T,6

=M ff v h [(vh+0)h[hxddT
'.' ST
"T,,

"2Nn vh ~r Oh x n+1 (v ) h] d d
. { If Wl[(V +c)~ dxdT + ff +dxd

nZ uk~+1 X Wk+l Xn z n n0 T k S k
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nOn Tk we have

h hn nn n
[(v +C) I, (vkJkl+ kik+

+ n n
+W~kl1(x-xk) + (x-xk+l)]

+ (, + wn tn-

Therefore

ffWn h h dxT 1 n n w
ff 11 (v +E)' I xd -T I (vk+E)p q + +o+,A

kx

ina + (P ]w' AX(At)2
~6 k+ 1 'k+ Wk+ k+1 k+1

By direct calculation

n n - [Av] k
Wk+1 [(v+&flhi"l + k -v

1
?ik z.... k

(Ax)

wn _nn n
k+1 k n + cv+,wn k+l (n(v1 +E) ~ 'i+1 v~sw W~)~k

n [Av]k~ n 1 nn nn nn

K (Ax)2?~

This implies that
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n ff h
n1 z n k1x

k

'.~no Z 
N-N [Av]x

n z X|0

N

E 1 n n k nk + w k n n ]Ax(At)

n n

Analogous calculations on Sso give

n+1 h [Adh n!.,;:: r. r ff Wk+l[(vh ]x

.ii)'n o Z no~

._ Sk

,n+1
1 N n1 [Av~k n + l

i.'- r y.(vk + ) zk +

no Z (Ax)

a0

1:: E. E w.n+l a n'n+1 wn+1 (Pn ]xt2
-" " Wk+1 [k k+1 k+1 k ] A ( t

[21:. .Substituting these calculations in the expression of J2

;". we obtain

N n [Av]k
,-" n+C n

i- ' ' ' (i) 2 =  0l I ~k€ k

nr 0 +1z(X
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.-" n0  [AvJk n0  [AviN l
- 2 At E Ax{(vk +c) x k + (V + ) xC 0N+l

Z (AX) (Ax)

+ w n + w nnAx(At) 2

m N fl" n n+l n+l n 2

Zr w (a + lk4D)x(
n z k+l k k-l n+n k )Ax(At)I!h hWe finally transform the remaining integral in J(v +e,9 969T)

iiJ3 - (vh)2 h dxdt=
3 M-TST,

6

SN (n+ 1)2 h dxdtn12h
-- T E 1 { k dd+ ff " ) ndxdt

i n o  Tn S

kk

Using (5.3)-(5.4), by standard calculations we obtain

;J ~m n 2_ n "

•m- N (w)kAxAt+3 m--T (w)

+ N N

no+l Z

m N n+l2 2 2

- (m-lT X X [Ewk ) 2 (wn) nAx(At) 2

Sno z
%"0

14
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1 02 0 + .NN+- N2N+l
jjjT At E {T.w ) (wk k *kI-

|z 1 "02 "0 N+ 2 N+l

[(wk + (Wk I k]Ax

We rewrite the first summand in J as follows

n n n +wn

wn 2 n wk+ +w k 2n +[wn 2 k+1 k 2 n
k k + [(wk) - ( )lk

and combine the expressions of 3. , i = 1,2,3 so obtained,

h h
as parts of J(v +F,0 .6,T) to deduce the following basic

identity

(5.6) J(v h+, h,6,T) =

Nn+l n n n
SVk Vk n -k M k+l-k-1 2 nAxAt
n- l A m(vk+ +E)()2 12Ax '" xt

: + At E ,n°0nAx -

z k

n
o N 1

- E ~~ 0  IAv]k no (v [A) k v]A
{(vk 2 k 0 +1 k 2 k

2 Z k (AX) 2k k (AX)2k

Ax N n n+l onn t+ E E +[!k no l k Z ~

n
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."MAt N n+l n n+l n+l n
6 -Wk+[akk+l + Wk+likAXAt +

n0 Z

mAX N n+ 3(m-E) E (w') AxAt +
n Z

N

mAt N n n n n+ +-tW k W kk]AxAt

mAt N n+l 2 (w n 2 n

-6(m-1) 7 z [-¢kAxAt -

nmAt o 2 0 N+12N+1 1 'o)2 no +12N+1
2(m-1) [(w , -k +( k ) k J-) tt + k 2 + IAx +

MAX N [Av ] [3wn + w~l] n+: a T(- 7 .E . k w k + n i]AxAt

n0 +l Z (Ax)

10
,-" Hi

From now on we will select test functions 4 of the form

2-m

_= (vh+)T f m > 1

where f satisfies (1.4). We will estimate the H."'o- 1

i = 1,2,...,10 in (S.6) in terms of f fx f For

.... . ..



65

notational simplicity set

Itf,fftII ST f- f f 1t

and

III f 111 11 fI1 + 11f 11 + 11ff 11x t

We start by making elementary estimates of * and its first

derivatives in terms of f

Denoting by h the piecewise linear interpolated of

- and recalling that c is of the order of Ax we have

C 1 f11if 1 < m 42

C If(Ax)m- T  if m > 2!L

Also

n - 1 mn . n 2-in =

(a)~ ni 1(v n+E) T f n (v n + E) = -fn

2-m 2-m 2-rm n fn
n 1- n .1]}m-nl-

1{[xvk)c) (Vk-l+) k + (V k- i

2-m 2-m
4 n l+) IWkt TIIfII + (V_ E f i1-_:( k x
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n+1 n 2-rn 1  2-rn
n k - k 2 rnv -1 nI~j + vn rn-i(b) k< At l .Iv+E) IojifI v+C) IhftII

k At M1 I~t

where

n n n 1v_, min {v k ; Vkl1
k

ni =V1 n~vk min {k v k)

From (a) -(b) we deduce

[c(vn+F) llfil + C I1f,11 if 1 < mn < 2
(5.8) k 2-r

jC[(vn+E:)- 1IfiI + Ihf Ih1](Ax) -- if m > 2

k XV) k1 f

(5.9) 2-rnI

k 2--m

temm following estimtes holds s f h fr



67

, ji(vh+COh,6,T) < C CIII f III(AX) atlog 6[

where

i.i

T.'.:..-Proof: We estimate the H. on the right side of (5.6)

separately. At points where the difference equation (1.11)

holds, the summand in 11 vanishes, and by virtue of Lemma

2.4, the sum extended over the remaining (n,k) is of the

order of Ax

Therefore

Hl, C (Ax) 1I. 4 C JJf J(6x)a .

We have also easily

IH21 + 1H3 1 4 CIlflI(Ax) a

In estimating H4 we only consider the term whose

summand is annl The estimate for the term whose sum-.. ,:~ °kk+l•
"... on .n

mand is a is analogous, and in fact simpler.

We have

N n n+l N n n+l
Ax F E OkPk+IAxAt = Ax E Okk+ lAxAt

n0 Z no fk<R(n+l)]u[k>K(n+l)]
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N n n+1 t (1) (2)+Ax E E ak+lAxA + K
n no K (n+l1) <k<K (n + 1)

As for K( 1 ) , using Lemma 2.4 and (5.8)

IK(1) < C(Ax)2 max I nI C ,ifI(Ax)
n,k k

"-' We estimate K( 2 ) by using the difference equation (1.11).

N [v n n 2(2) = n . AV k + wk---IY" 2] +l~ x A t

K Ax E E 2+VeTA i;- 2k1
n- o (nr+l) <k-<.(n+l)

N [Av] [ n+l
<Ax Z m(v ) I~+lIAxAt +

no 0R(n+l1) -<k-<Z(n+l1) (Ax)

+ Ax N E M Wk+1+Wk 2 n+l =

n0 K(n+l)<k<K(n+l)

= K (2) + K(2)
a b

Estimate the summand in K 2 ) as follows

a

mAx(vn+,) -i l+ < Cf1f 11x )
F-:6

(Ax).:,::i, ,: .:- I( x)
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k +C I[Av] 7 j

v- + E (Ax)

n n A n+l n
Now observe that v. =v + w Ax = + At + w Ax

k+l k+1 k 1 P",

n n n n+l
k+l n k+l k+l

where w -,and o At=0 By the-'. kl Ax k+l"

estimates in Section 2

n 'Vn+l-v~ C Ax
k+l k+l

and therefore

vn
V 1I C Ax Ck

'v "v" I 1 E+ E

k+l

Consequently for K we have
a

K(2) < C If,,, (Ax) [Av]lkA~
a.. (Ax)

By Lemma 2.6

1,1N Avik N1
-. 2 AxAt < C (At

( Ax Z () no  n

Ss< C(1 + log 1)

! so that
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( ) C IlifIll (Ax)' I log 61

We estimate IK (2)1 by performing a discrete integration by partsb

n n n+1 nk+l
M N W k-1+Wk2 O~k+Im-1 Ax E ( )( Ax AxA

0no (n+ ) kQ K(n+l)

N [Av]1 I' n+l

,in, Ax E 'k A~ xII

< C IlIfIII (Ax) log 6I

Combining these estimates we obtain

1141 < C IlfI11(Ax)a I logS l

By similar calculations involving the use of Lemma 2.6 we deduce

115 + 11171 <  C IlfII(Ax) Ilog6I

In estimating H6 we first integrate by parts (discrete

integration) and use the techniques above to obtain

IH61 < C If1i(Ax) O log (I
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Analogous techniques give the desired estimate for 118 f1i9

HIO . The proof is complete.

Corollary 5.2. If -L 4 vox x 4 0 , for some positive

constant L , then

Ij(v h+e,,h,T)t C IIflI(Ax) V6 > 0

5.3. Proof of Lemma 4.2

h h h h h
Since J(v +e,56,T) = J(v +e,O-0 ,6,T) + J(v +E,10, ,T)

and the last term has been estimated in Lemma 5.1, we have

only to estimate J(v h+t,-h ,6,T) . To this end we will need

the following preliminary fact

Lemma 5.3. There exists a constant C independent of n

k , Ax, * such that

(Ax.At) -l ( h)dxdt 4 C IfIII (Ax) a [1+(n+)-11

k n

Tk
I.

Vwhere

n 

h

•~~~~~ ~~ min v' 7 _ ,, ." "." '= < - 7 i:- ' ,
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n
Remark An analogous statement holds for Sk

Proof of Lemma 5.3:

ff (Oh-)dxdt = ff (0n-p)dxdt +
Tn 

Tn k

Tk  Tk

+ ff [np (X-Xk) + t(t-tn)]dxdt = I(1) I(2)

For I(2 ) using (5.8)-(5.9) we have

1 I(2) I C llfll(Ax) [l+(v-+E)-I]AxAt

Estimating I(I)

= ff {[&k-O(x'tn)] + [O(xt)-O(Xtn)]}dxdt <
• " Tn

T k

S{lxl 1 n  Ax + 11 l 1 n  At} AxAt
PT k T k

and the desired estimate follows from (5.8)-(5.9).

Corollary 5.4: For all n, k, if Vk = max vh

n
Tk

AxAt f ( -¢)dxdt 4 C IliflUI (Ax)

T T
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.Ax ff (0h_ )dxdt < C IIIfIll (Ax)'
,'..,"AxAt T

i~~~~i~ n s r p a e y S

n n
* . Remark: Corollary 5.4 holds if Tk is replaced by Sk

We are now in the position to estimate J(vh +,O-h ,6,T) .

(5.0)J(h+E~.hT h h ~h h h h

hh(.10) j(vhE,-h96,T) Sff {vt(-h + m(v +)(vS T,6

h 2 m h 2 h

+(m(vx) _ m._(Vx) )(¢.€ )}dxdt =

= N- mx~+J

k. ff (h)dxdt +n o Z Sn

N w +w~
+.. .. iik Nn m k+2 k+l)2] ff (O.,h)dxdtn kw

n

0z 2

SE (3w n n n n h
'0  Wk+l Wk+2)(Wk+l'k+2) )dxdt

+ 1 E E(3w n+l+w n+l ) n+l n )dxdt+- + E E (. Wk+l Wk )(wk  -k+l) ff (-hdd

+ m ff [(vh +E)(vh)x(" + (Vx) ( 'ph)]dxdt = Pi

ST,5 i=l

,.A
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Estimate of I1Pl + IP2 1

N m wk+l+wh 2fP[2 ff (-h)dxdt +

no 0(n+1)kQ<(n1) sk

n
NL

':' Nn m-W 4 .+ 0- Z O- f(-hdxdt

n [k<K(n+l)] U [k>K(n+l) S

="P* + P**

For P * by the estimates in Section 2 and Corollary 5.4

we obtain easily

IP**l < CIIf1" (Ax) •

In estimating P* we use the difference equation (1.11).

N (An~ v+,)h
I P < C Z E IAv- 1 AxAt{ xt ff ( -h )dxdtl}

n Z (Ax) xAt

SC IifIII(AX)c log61

The estimate of 1P2 1 is analogous.

..

o'-. . . ..-'.. ." . •. . ... , ' .. . ..

" ' " " ' " " " " ' :0 ' ' - " " . . .-.. • .
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Estimate of jP3 + P:

N (Av] t Ax h fIP 3 1 + IP41 < CE E 2i AxAt- _ f h- )dxdtll
no Z (Ax) SLT

By Corollary 5.4 and Lemma 2.6

1P31 + 1P 41 < C 111f III (Ax)~ log 6

Estimate of P

P5  m E E {ff [(v h+E)V h~- h + (v h 2( _-h )dxdt+x x x
f0 Z Tn

k

+ ff [(V h+c)v~ h(Oh) +(vh)2 (O~h) ]dxdt} Q(l) Q Q(2 )
nx x

S

We estimate Q(l) by performing an integration by parts

in x over eachT
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~fn+l .k+1)

We have

h htn+l 
xk+ If f ( v l -i-E v h ( -O h ) d x d t = f f (v h + ) (v ) ( J - d x d t

t A

nl h hOh)
f (v +C)v 1) -

) (t Xk+ld
t

tn+l h h h +Ax ,t)df (V +E)V ( .- (t,x 1. At n.( . t ) dt n

ff(v~ h (2 -h )dxdt

Therefore

N tn+1 h nQ~1~m { f (v +e)wnoj ( t,xk+ )dt

tn

na nhA

5* ** 

(v 

.i.....*.*k.*TV..*. 
-n. 

-
*
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Similar calculations for Q(2 ) give

2' N tn+l
(2) = m n. _ {-f (vh+c) nl ) t',~ Wk+lt- h  tx k )

n Z t
0 n°

3 tn+l

(v +E)wk+l(¢-¢ h ) (t,x k + (ttn))dtl

For all k e Z and t E [tnptn+l ]

.h

I(€-Oh)(t,Xk)i 4 C If 11(Ax)a(1OaI+1)Ax

so that

N t n+l h n hE E f (vh+E)wk(O-0 h ) (t,xk )dt4

no Z

. C IlIIll (Ax) E (1+Ia k)AxAt 

, C 111fIII (Ax) a  log 61

Consequently

(+) + ( C 1Iflo (Ax) a  loF 61IQ
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n t
N nl

Now from calculations analogous to the ones leading to (5.8)-

(5.9), we have in T n (and in S~ n

I(vh+c)( _ h)I < (v'+E:)(II1I 11 x + 110 11 A t) K,
x nt n

oTk Tk

4 C(vh+E) [1 + (Vn+F) - + (v~k+Cf 1  IIfIl (Ax)'

4 C IIfIII(Ax)c'

Moreover

1 v n vn+1 nv
= [k + ]AX

=~~ n l + OklI

Hence

N

I +Q C o~f,,,(Ax)' log 61 + C ,If11,(Ax), E r IonIAx~t
n Z

< C IIfill (Ax)' I 1og,51

This completes the proof of Lemma 4.2.
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6. Numerical Results

In this section we discuss briefly the results of our

numerical experiments with the scheme (1.11). All computa-

tions were carried out on the CDC 6600 at Indiana University.

In each case we specify only the value of Ax used. The

values of E and At were always chosen to be the smallest

and largest convenient values, respectively, consistent with

the mesh conditions [A3] and [A4].

Not surprisingly, the condition [A4] on At/Ax 2  is

in fact necessary in practice. But the condition [A3] on c

is probably overly restrictive. For example, for the speci-

fic problems discussed below, [A3] requires that c > 13.8Ax

which is not "small" when, say, Ax = .OS . Indeed, for the

second problem discussed below, we found that the accuracy

increased noticeably as c decreased. A practical (but

not theoretically justified) alternative to [A3] is the con-

dition

(6.1) E > m+l Ax

Such a condition is sufficient for the bounds (2.1) and

(2.2) for v h  and vh to remain in effect. (The more

stringent condition [A3] was required only for bound (2.15)
.2vh

for = .) For the specific problems discussed below,

condition (6.1) requires only that c > .58Ax
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For purposes of comparison, we used the Barenblatt-

UPattle solution v , which for m = 2 is defined by

(see [16]),

r X)],.x

(6.2) v(x,t) =

0 , IxI > C(t)

where

(t) = [12(t+l)] 
1 / 3

First, we applied the scheme (1.11) taking vk = V(Xk,0)

0= -(0) , and c r = (0) ° The computations were per-

formed with three different sets of mesh parameters. Com-

_ 1
paring the exact and computed solutions, at t = "2" , we

found the following:

1x , )h- i 1 h 1

.1 .0202 .00666

.05 .0106 .00340
b"7

.035 .00551 .00173
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hh
12i Quite clearly, the observed errors in both ch and

v are O(Ax) o This is significantly better than the

rates predicted by Theorem 4.1, which are O(l[xlog~xl1 / 1 2)

O(Aogx 1 /6) ~ h an
and O(J xlogx 1  for c and v respectively. These

discrepancies are explained by the fact that the solution

(6.2) has derivatives of all orders which are uniformly

bounded on its support, whereas the bounds (4.1) and (4.2)

were derived under the minimal smoothness conditions which

all solutions are known to satisfy. Another difference

between the observed and theoretical results is that the

observed rate of convergence for Ch is the same as that

for vh whereas Theorem 4.1 predicts roughly that

I4l h O(Iv-vhH/ 2 ) H 12owever, the computation (4.15)

shows that, as long as Jr(t)- h(t)I is small,

h ____ h
k(t)-M (t)I < C Ilv( o ,t)-v (.,t)IIl R + C Ax

Thus when the interfaces are known to be moving with speeds
! i h

bounded away from 0 , the rate of convergence of h will

h
in fact coincide with that of v

In the second example we took the same initial func-

0 0tion v0 as before, but now with C . -3 and C 3
0 r

Thus v0  is neither concave nor continuously differentiable

t r
on [C . The results were as follows:

,--
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Ax 1 hi 1 h 1

.i .1107 .06905

.05 .1073 , .06697

.025 .1055 .06592

We are uncertain as to whether meaningful comparisons

can be made between these data and (4.1) and (4.2). Never-

theless, it is clear that, at least qualitatively, Theorem

4.1 gives the correct result: in the absence of smoothness,

the convergence may be quite slow.

The scheme (1.11) is thus seen to have two shortcomings.

The first is that the parabolic stability condition [A4]

makes it impractical to apply the scheme with small values

of Ax . This difficulty can probably be overcome by em-

ploying instead a suitable implicit variant of (1.11). We

intend to discuss such a scheme elsewhere. The other short-

coming of the present method is the unsatisfactory rate of

convergence. While this phenomenon is partly due to the

weakness of the exact solutions themselves, it may be

possible to effect some improvement by a more sophisticated

treatment near the interfaces.

-;-,.'. L......
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